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Understanding new particle formation and their subsequent growth in the troposphere has a critical impact
on our ability to predict atmospheric composition and global climate change. High pre-existing particle
loadings have been thought to suppress the formation of new atmospheric aerosol particles due to high
condensation and coagulation sinks. Here, based on field measurements at a mountain site in South China,
we report, for the first time, in situ observational evidence on new particle formation and growth in remote
ambient atmosphere during heavy dust episodes mixed with anthropogenic pollution. Both the formation
and growth rates of particles in the diameter range 15–50 nm were enhanced during the dust episodes,
indicating the influence of photo-induced, dust surface-mediated reactions and resulting condensable vapor
production. This study provides unique in situ observations of heterogeneous photochemical processes
inducing new particle formation and growth in the real atmosphere, and suggests an unexpected impact of
mineral dust on climate and atmospheric chemistry.

A
erosol particles, being important to both global climate1,2 and atmospheric chemistry3, can be directly
emitted from natural or anthropogenic sources and secondarily formed in the atmosphere3. Mineral dust,
with an emission rate of 1000–3000 Tg per year from deserts or semiarid areas4, is the most important

primary aerosol particle source and dominates the aerosol mass in the global atmosphere. New particle formation
(NPF) and subsequent particle growth form together a secondary aerosol particle source that controls the total
particle number concentration5–7. The climatic effects of mineral dust and atmospheric NPF have been thought to
be disconnected from each other. Mineral dust affects climate via direct light scattering and ice nucleation1,2,8–10,
whereas NPF contributes significantly to the global cloud condensation nuclei (CCN) budget5–7 and thereby to
uncertainties in the indirect radiative forcing11,12.

Mineral dusts injected into the atmosphere can affect atmospheric photochemistry in very complicated ways.
On one hand, dust tends to suppress photochemical processes via light scattering1, scavenging of reactive gases13

and photochemical oxidant uptake14,15. For example, both field and model studies have reported significant
reductions of acidic gases and O3 in dust plumes14,16–19. On the other hand, recent studies indicate that mineral
dust can induce chemical reactions in the presence of sunlight, defined as heterogeneous photochemistry20,21.
Such observations suggest that dust has the potential to participate in and promote the atmospheric photoche-
mical processes directly as a reactant or catalyst22.

NPF and subsequent particle growth are tied to photochemistry as well. Particle nucleation generally
originates from the production of H2SO4 via the oxidation of SO2 by the OH radical5, while particle growth
depends crucially on low-volatile vapors produced from the photo-oxidation of volatile organic compounds
(VOCs)23,24. High pre-existing particle loadings are considered to suppress the atmospheric NPF because of
high condensation and coagulation sinks5. Therefore, it has been thought that dust and NPF do not usually
co-exist, since high dust concentrations tend to scavenge both low-volatile vapors (e.g. sulfuric acid) and
small molecular clusters efficiently6,7. In this study, we analyzed a two-month period of comprehensive
observations during the Asian dust storm season in 2009 at a mountain top site in southern China25. The
results show, for the first time, that high dust concentrations and NPF can really co-exist, in addition to
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which we provide in situ evidence of dust-related heterogeneous
photochemical processes that promote atmospheric new particle
formation and growth.

Results
As a part of a field campaign on aerosol-cloud interaction at Mount
Heng in Hunan Province, southern China25, we conducted intensive
measurements of a wide variety of trace gases and aerosols during
spring 2009 (March to May), a season with frequent dust events (see
Supplementary Information (SI) for details). Fig. 1 shows the tem-
poral variation of several quantities (including PM10, PM2.5, calcium
in PM2.5, and particle number size distribution in the diameter range
of 10–500 nm) measured during 20 April to 9 May, 2009. Two epi-
sodes of very high aerosol loadings, with maximum PM10 mass con-
centrations of about 248 mg m23 and 911 mg m23, appeared during
20–22 April and 25–26 April, respectively. The low mass fractions of
fine particles and high calcium concentrations during the two events
suggest the primary origin of these particles was a dust storm. The
satellite observations on board the CALIPSO satellite on 25 April,
showed clearly the presence of multi-layered dust aerosols in the
lower troposphere over the southern China (Fig. S2).

Unexpectedly, intense new particle formation and growth was
observed during the two major dust episodes (Fig. 1). The formation
rates of 15 nm particles, J15, were in general slightly higher during
dust days than during non-dust days (0.27 6 0.12 cm23 s21 vs. 0.23
6 0.06 cm23 s21), and the highest rate (0.45 cm23 s21) was observed
on the strongest dust day (April 25th, Table 1). It should be noted that
J15 represents the combined effects of atmospheric nucleation,
growth of nucleated particles to the diameter of 15 nm, and sim-
ultaneous scavenging of the growing nuclei by the pre-existing popu-
lation of larger particles. As a result, J15 can be considered as a good
metric for estimating the source rate of new particles that might
eventually lead to the production of new CCN. The particle growth
rates in the diameter range 15 to 30 nm were comparable to each
other between the dust and non-dust days (Table 1), indicating larger
production rates of extremely low-volatile vapors on dust days, when
the condensation sink for such vapors was very high. In the diameter
range 30 to 50 nm, the mean particle growth rate on dust days was
14.3 6 6.5 nm h21, more than twice the value on non-dust days (6.6

6 3.4 nm h21). The highest growth rates were observed on April 22nd

and 26th during the two main dust episodes (Table 1). Such growth
rates are quite high compared to other regions around the world
(typically below 10 nm h21 in remote atmosphere and below
20 nm h21 in some moderate polluted regions6). However, consider-
ing the high condensation and coagulation sinks at particle loadings
in excess of 650 mg m23 (mean value during the NPF period at 25th

April), the occurrence of NPF and particle growth observed here
appears to contradict our current understanding of aerosol
dynamics5–7,11.

Since sulfuric acid is the key driver of atmospheric nucleation5,26,
we utilized the sulfuric acid proxy approach, described simply as the
ratio of UV 3 SO2 to condensation sink (CS)27, to investigate the role
of sulfuric acid in NPF events at Mt. Heng. Fig. 2A shows the scatter
plot of UV 3 SO2 versus CS during typical (defined as continuous
growth occurring after the particle nucleation) and non-typical NPF
events (defined as no evident growth occurring after the particle
nucleation, in which case particle nucleation rates and growth rates
are hardly to be calculated) as well as non-NPF events. Since high
sulfuric acid concentration and low CS promote NPF, it is not strange
at all that the NPF event days (both typical and non-typical events)
and non-NPF event days were separated into two different groups
laying to the left and right of the diagonal line, respectively. However,
the NPF events observed during 25–26 April behaved in the opposite
way, especially on 25 April when the PM10 approached 650 mg m23 at
the period of NPF (12:00–14:59 LT). In addition, the formation of
fine sulfate was observed during the dust event of 25–26 April (See
strong diurnal cycle of sulfate in Fig. S7). Considering their alkaline
nature, mineral dust particles should take up gaseous acids more
easily than most other types of particles13,28, which is expected to
suppress NPF even further. Therefore, our observations strongly
suggest an additional dust involved pathway enhancing the produc-
tion of sulfuric acid. It should be noted that several recent studies in
polluted urban regions also observed NPF with high CS29, which can
be attributed to even stronger source strength of low-volatile vapors
resulting from very high SO2 concentrations.

Particle growth plays a critical role in determining whether new-
formed particles can reach sizes to be able to act as cloud condensation
nuclei (diameter .50–100 nm). Different from particle nucleation,

Figure 1 | Temporal variations of aerosol related parameters during 20 April to 9 May, 2009. (A) Time series of PM10, PM2.5, calcium in PM2.5, and (B)

particle number size distribution at Mt. Heng during April–May 2009.
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the contribution of sulfuric acid to particle growth is usually minor,
especially at sizes larger than a few nanometers30,31. Instead, low-
volatile organic vapors (oxidized biogenic VOCs and nitrogen con-
taining organics) have demonstrated to play a key role23,24. To invest-
igate the possible roles of VOCs during the dust events, we estimated
the concentration levels of directly-emitted VOCs during the cam-
paign by carrying out Lagrangian dispersion modeling32–34 based on
the emission inventories for total anthropogenic VOCs35 and bio-
genic monoterperenes36 (See Fig. S4). The simulations showed that,
during the dust events, both anthropogenic and biogenic VOCs
concentrations were much lower than the corresponding mean
values during the whole campaign. In addition, the ratio of ozone
concentration to CS, indicating the potential of producing high con-
centrations of low-volatile organic vapors, clearly showed much
lower values during 25–26 April. This observation violates our cur-
rent understanding of particle growth, unless there were some non-
traditional mechanisms promoting the oxidation of VOCs.

So, what are the most plausible additional sources of gaseous
sulfuric acid and low-volatile organic vapors? In case of sulfuric acid,
one potential pathway is the dust-induced photo-catalytic reaction
which can produce additional OH radicals to accelerate the oxida-
tion of SO2

37. This is a plausible explanation for the observed episode
on 25–26 April, as the conditions with increased photo-sensitive

components, sufficient solar radiation, water and reactive species
were favorable to this pathway. As shown in Fig. S5, the strongest
new particle formation that occurred on 25 April was connected to
heavy loadings of Fe (mostly exist as Fe2O3) and the highest relative
humidity among the dust event days (detailed information is
described in the SI, Fig. S5 and S6). Both of these features act in
favor of heterogeneous photocatalytic reactions in the water films
around the dust particles. In addition, the photolysis of enhanced
HONO is another possible pathway to form OH radical, which has
been demonstrated to be induced by the TiO2 photocatalysis of NO2

in our previous study25,38 (detailed information is also described in
the SI).

In case of low-volatile organic vapors enhancing the particle
growth, photo-promoted oxidation of VOCs by the illuminated dust,
demonstrated by several laboratory studies39–41, is considered as the
most plausible pathway. Secondary vapors with a wide range of
volatility can be produced by the oxidation of complex VOCs, such
as biogenic organics. A small fraction of these vapors are extremely
low volatile and can grow efficiently all-sized particles, including the
very small ones42. Most of the oxidation products have higher vola-
tilities and can contribute to the growth of larger particles only.
Therefore, our observation that 30–50 nm particle growth rates were
higher than those of 15–30 nm particles in the dust plumes (Table 1)

Table 1 | Formation rates, growth rates, source rates of vapor and PM10 concentrations during typical new particle formation events at Mt.
Heng during March to May of 2009

Date J15* (cm23 s21) GR(15–30)* (nm h21) GR(30–50)* (nm h21) Q (cm23 s21) PM10*** (mg m23)

15-Mar 0.26 4.3 NA** 1.0e 1 06 ****
25-Mar 0.17 5.6 5.6 1.1e 1 06 56.3
7-Apr 0.27 7.7 11.4 1.9e 1 06 75.7
20-Apr 0.15 6.1 6.1 1.0e 1 06 82.0
22-Apr 0.20 4.9 19.3 1.5e 1 06 135.1
25-Apr 0.45 7.2 12 2.8e 1 06 668.6
26-Apr 0.26 7.4 22.4 2.8e 1 06 506.9
27-Apr 0.31 6.1 11.9 1.7e 1 06 75.3
4-May 0.17 4.6 3.5 1.3e 1 06 69.8
5-May 0.29 6.4 5.8 1.8e 1 06 54.6

*: The time periods of particle nucleation and growth varied largely from day to day. Generally, particle nucleation started at 10:00–12:00 LT, ended at 12:00–13:00 LT; particle growth from 15 nm to
30 nm started at 11:00–12:00 LT, ended at 13:00–14:00 LT; particle growth from 30 nm to 50 nm started at 13:30–14:30 LT, ended at 15:00–17:00 LT.
**: No growth rate can be detected.
***: Hourly average values of 12:00–14:59 LT.
****: PM10 mass was not measured.

Figure 2 | Analysis of relationship between different proxies. (A) Scatter plot of hourly averaged UV 3 SO2 versus condensation sink at noontime

(12:00–14:59 LT), (B) Temporal variations of the ratios of daily noontime (12:00–14:59 LT) averaged ozone to condensation sink during March–May

2009.
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is consistent with our hypothesis of heterogeneous production of
oxidants in dust plumes. To quantify the contribution of dust-related
processes to the condensable vapors, we calculated the source rates of
the vapors (Q) during the typical NPF days (see Table 1). During 25–
26 April, the values of Q were 2.8 3 106 cm23 s21, twice those on non-
dust days (about 1.4 3 106 cm23 s21 on average), indicating that at
least half of the vapor precursors for observed particle growth on 25–
26 April might have been produced from heterogeneous photoche-
mical processes associated with the presence of dust.

In summary, our study provides observational evidence on photo-
induced particle nucleation and growth, as well as HONO production25,
in the presence of mineral dust particles in the real atmosphere.
These results demonstrate that mineral dust can participate in atmo-
spheric photochemistry directly as reactants or catalysts, and that
dust can enhance the atmospheric oxidation capacity by surface
redox reactions20 and gaseous radical production. Given the increas-
ing evidence of anthropogenic industrial dust43 and worldwide distri-
bution of chromophores (i.e. nitrate and organics)22, photo-sensitive
aerosols might be important to atmospheric photochemistry on a
global scale. In laboratory experiments, dust-related heterogeneous
photochemical reactions have been demonstrated to be stronger
when dust particles are mixed or coated with other reactive species
such as nitrate44. In this study, such a mixture between mineral dust
and anthropogenic pollutants actually occurred. In Fig. 3A–3D, we

show the calculated transport pathways using a Lagrangian transport
and dispersion model with a ‘‘footprint’’ retroplume for the two
events together with land-use data, maps of SO2 emission and nat-
ural emission of monoterpenes. The analysis clearly shows that the
observed air masses during the two dust events originated from the
Taklimakan and Gobi Deserts and carried with the anthropogenic
pollutants from the North China plain and eastern China to south-
ern China. The time series in Fig. S5 show relatively high concentra-
tions of anthropogenic pollutants (e.g. sulfate and BC in PM2.5)
during the dust events, suggesting a strong mix of dust and polluted
plumes. This kind of mixed plumes provided abundant reactive
species and water, which favored aging of the dust particles to form
secondary coating (see Fig. S6), and induced heterogeneous photo-
chemical reactions during the long range transport25. For example,
the photodecomposition of coated nitrate may release NO3 radical to
oxidize some specific VOCs44 (Detailed descriptions are in the SI).

Discussion
Our investigation provides ‘‘direct’’ observational evidence on new
particle formation and growth in heavy dust plumes mixed with
anthropogenic pollution, and suggests an unexpected source of nuc-
leating and condensable vapors via dust-induced heterogeneous
photochemical processes. In Asia, huge amounts of dust is being
produced during the dry season from both Gobi and Taklimakan

Figure 3 | Map shows eroded area, emission rates and transport pathways for the dust cases. (A) Area of eroded in Asia, (B) Emission rate of SO2, (C)

Emission rate of monoterperene from biogenic emission in April, and (D) 100 m footprint retroplume calculated by 7-day backward Lagrangian

dispersion simulation for 20–22 April and 25–26 April, 2009. The maps were drawn by the software of Igor Pro, http://www.wavemetrics.com/.
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deserts45,46, and the dust is being transported eastward across the
polluted northern and eastern parts of China (Fig. 4). The mixture
of dust and anthropogenic pollution plumes can be further trans-
ported easterly in the mid-troposphere and southerly in the lower-
troposphere, causing significant impacts on the remote atmosphere
in downwind areas like the Pacific Ocean even other continents in the
world47,48 (Fig. 4). Given that the polluted dust promotes new particle
formation and growth, this study suggests a more crucial role of dust
in both regional and global climate change than the current know-
ledge suggests. In addition, the observation of dust-promoted par-
ticle nucleation and growth, along with HONO production, provide
strong evidence on the role of aerosol-related photochemistry, which
would enhance the atmospheric oxidation capacity via photo-
induced surface redox reactions and gaseous radical production
(Fig. 4). These findings challenge the traditional point of view that
aerosols are net sinks for the atmospheric oxidation capacity, and
indicate a possible pathway for the large missing source of OH radical
in heavy polluted regions49.

Methods
Field experiment. Mount Heng located in the middle of Hunan Province, southern
China, is a remote mountain area with few local sources around but generally
downwind both source regions of Asia dusts and anthropogenic pollutions in the
spring (Fig. S5). The field campaign was conducted March to May in 2009 at a
meteorological station on the summit of Mt. Heng. Comprehensive parameters of
trace gases and aerosol components, including SO2, O3, PM2.5, PM10, sulfate, calcium,
BC in PM2.5, were continuously measured during the campaign. Particle number size
distributions in the range of 10–10000 nm were employed to detect the particle
nucleation and growth. Several filter based samples were also collected and analyzed
to assist interpreting the observed phenomena. Detailed information is provided in
the SI.

Numerical calculation and modeling. Methods to calculate the particle formation
rates, growth rates, and condensation sink (CS) are followed the suggestion of

Kulmala et al.50. Lagrangian particle dispersion modeling (LPDM) was carried out
based on a method developed and evaluated by Ding et al.32 using the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model. For each hour, 3000
particles were released at the site and were traced backward for a 7-day period. The
residence time at 100 m altitude, i.e. footprint retroplumes, were used to understand
the contribution from potential source regions.
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