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• A method was developed to remove
coatings surrounding BC in ambient
aerosols.

• The MAC of decoated BC of 4.4 was
enhanced to 9.6 m2g−1 for ambient BC
aerosols.

• BC radiative forcing in the ambient
atmosphere was enhanced by a factor
of ~2.

• BC absorption enhancement peaked in
day time driven by secondary sulfate
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The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric
aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative ab-
sorption enhancement require the experimentally-removing the coating materials in ambient BC-containing
aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol
coatingswas quantified using a two-step removal of both inorganic and organicmatter coatings of ambient aero-
sols. Themass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4± 0.8m2g−1 was
enhanced to 9.6 ± 1.8 m2g−1 at 678-nmwavelength for ambiently-coated BC aerosols at a rural Northern China
site. The enhancement of MAC (EMAC) rises from 1.4 ± 0.3 in fresh combustion emissions to ~3 for aged ambient
China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25 ± 0.55, and sulfates
were primary drivers of the enhanced BC absorption.
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1. Introduction

Black carbon (BC) is emitted from incomplete combustion of bio-
mass and fossil fuel. The atmospheric aerosol BC contributes to one
of the largest uncertainties in climate models with estimates of its
global mean radiative absorption varying from a lower range of
0.1–0.6 W m−2 (Allen et al., 2012; Boucher et al., 2013; Myhre
et al., 2013; Schulz et al., 2006) to a strong effect of 0.9–1.2 W m−2

(Ramanathan and Carmichael, 2008; Sato et al., 2003). Accurate as-
sessments of BC radiative absorption require observational con-
straints of BC emissions, BC mass absorption cross-section (MAC),
and enhancement of BC absorption after mixing with non-BC aerosol
components in the atmosphere (Bond et al., 2013; Schulz et al.,
2006). Non-absorbing matter co-emitted with BC or formed in the
atmosphere may surround a BC core (as coating or internal mixing).
Such non-absorbing coatings of BC potentially lead to an enhance-
ment of MAC (EMAC) and thus the radiative absorption (Bond et al.,
2006; Jacobson, 2001; Zhang et al., 2008).

At present, climate models vary widely in describing BC aerosols to
be either externally or internally mixed, which leads to large uncer-
tainties of EMAC, spanning over the range 1–3 (Chung and Seinfeld,
2005; Jacobson, 2012; Schulz et al., 2006). To better constrain the
current large diversities in description of BC radiative absorption in cli-
mate models, improved measurements of BC EMAC in ambient aerosols
are critical (Boucher et al., 2013). The direct measurement of EMAC

requires experimentally-removing the coating materials in ambient
BC-containing aerosols (Bond et al., 2013). It is documented that BC
coating materials consist mainly of sulfate, nitrate, ammonium and
organic carbon (Moffet and Prather, 2009). Pioneering efforts have
developed a heating denuder to evaporate high-volatility and semi-
volatile coatings. A recent report using such a heating denuder method
suggested negligible absorption enhancement of BC in ambient aerosols
Fig. 1.Map showing the rural sampling site at Yucheng in Northern China Plain. BC r
in North America (Cappa et al., 2012), which contrasts to theoretical es-
timations of a factor of ~2 (Jacobson, 2001). However, another research
observed the absorption enhancement of a factor of 1.4 in ambient aero-
sols in U.K. using such a heating denuder method (Liu et al., 2015).
These variations in observations underline the urgent need of indepen-
dent methods/experiments to quantify EMAC. The removal of coating
matter from ambient BC aerosols remains the central challenge for the
quantification of EMAC and thus for an accurate modeling of the total
BC-related aerosol warming in assessments of climate change
(Boucher et al., 2013; Myhre et al., 2013).

We have developed an aerosol filter dissolution-filtration (AFD) sys-
tem for a two-step removal of both inorganic and organic matter coat-
ings of ambient aerosols. Samples of aerosol fine particulate matter
(PM2.5) in North China were analyzed for MAC of BC before and after
the coating removal to establish EMAC values. The observations showed
strong absorption enhancements by a factor of 2–3 for BC inNorth China
PM2.5. The EMAC in fresh emissions of fossil-fuel combustionwas a factor
of ~1.4, increasing rapidly with sulfate abundance.

2. Materials and methods

2.1. Intensive campaign

The high-intensity sampling and monitoring campaign was
achieved at Yucheng (36.83°N, 116.57°E), a regional rural site in the
center of the densely populated North China Plain (Fig. 1). PM2.5 aero-
sols were collected on pre-combusted quartz filters (90 mm in diame-
ter, Pallflex, Tissuquartz 2500 QAT-UP) mounted on mid-volume
(100 L min−1) atmospheric samplers (TH-150C-III, Wuhan Tianhong
Instrument Co., Ltd, China). The Yucheng campaign ran sample collec-
tions during daytime (9:00 AM–17:00 PM) and night (17:30 PM–
8:30 AM). In total 36 PM2.5 samples were collected during three
adiative forcing in CMIP5 GISS simulation is color shaded (Schmidt et al., 2014).



Fig. 2. Mass absorption cross-section (MAC) of vehicle samples for measurement in this
study, theoretical calculations, and literature review. Left columns: the measured MAC
of vehicle samples (Fresh emission) and their solvent/decoated pure BC isolated in this
study. Central columns: the calculations of MAC of diesel soot using classic Rayleigh–
Debye–Gans (RDG) theory on clusters of coated spherules (models 4 and 5 in Adler
et al.) (Fresh emission), and on an aggregate of total radius Rg containing pure uncoated
BC spherules of 10, 15, or 25 nm radius (model 2 in Adler et al.) (Adler et al., 2010).
Right column: the measured values of freshly emitted fossil-fuel combustion suggested
in the literature review (Bond and Bergstrom, 2006; Bond et al., 2013). The MAC of
wavelength 532-nm in the theoretical calculation (Adler et al., 2010) and 550-nm in the
literature review are adjusted to 678 nm using an Absorption Angstrom Exponent (AAE)
of 1 following (Cheng et al., 2011).

53X. Cui et al. / Science of the Total Environment 551–552 (2016) 51–56
weeks of June and July 2014. Three samples were collected in relative
humidity of 100%. The high humidity wetted the original sample filter,
and part of the coating materials may thereby have been removed be-
fore AFD solvent treatment. We therefore excluded these three samples
from the statistical analysis.

The concentrations of water soluble inorganic ions (SO4
2−, NO3

−,
NH4

+) in PM2.5 were measured by a model ADI 2080 online analyzer
for Monitoring for AeRosols and Gases (MARGA, Applikon Analytical
B.V., the Netherlands) at 1-h time resolution (Du et al., 2011). The ion
concentrations were used to calculate the ratios: SO4

2−/EC, NO3
−/EC,

NH4
+/EC, to infer BC coatings and shell thickness. The sumof those ratios

and OC/EC of bulk concentrations represent the total non-absorption
particulate matter (NA-PM) coatings.

The effectiveness of the AFDmethod was tested bymeasurement of
fresh emissions in diesel vehicle exhaust and tunnels. Five PM2.5 sam-
ples were directly collected at a diesel vehicle exhaust, and six samples
were collected in the center of a 1.5 km long road tunnel.

2.2. Water and organic solvent treatment with AFD

The aerosol filter filtration-dissolution (AFD) method removes non-
BC substances from the sample filters by two stages of dissolution
mediated by water and organic solvents. Water dissolves sulfate,
nitrate, ammonium, and water soluble organic carbon in filter aerosol
samples. The remaining OC on the filter is removed with dichlorometh-
ane (DCM) and acetone mixtures (Rajput and Sarin, 2014).

A punch of 47mm in diameter of filter sample was cut and fixed in a
sand core funnel. A rubber tube was attached to the funnel outlet and
blocked by water pressure. A volume of 50–200 ml (depended on the
sample loadings of filters) distilled water was slowly injected into the
funnel. The filter was immersed in water in the funnel for 30 min.
Then, the rubber tube at the funnel outlet was slowly released of pres-
sure, and water in the funnel gently passed through the sample filter
and drained out. Another volume of 50–200 ml water was added in
the funnel, and filtered out slowly. A small amount of ethanol was
applied to remove remaining water in filter and funnel, and the AFD
system was ready for next stage of organic solvent treatment.

The volume of 60 ml mixtures of dichloromethane (DCM) and ac-
etone (1:1, v:v) was injected into the funnel, and held for 30 min be-
fore being filtered out. Small amounts of ethanol, then water, were
employed to clean the funnel. To ensure slow and gentle filtration,
care was taken during the release of water pressure at the funnel
outlet rubber tube. Through the dissolution of organic and inorganic
coatings, the solvent-decoated, and therefore pure BC remained on
the sample filter. Finally, the treated filter in the funnel was dried
at 60 °C. The solvent treatment and original sample filters were
then stored in a desiccator before further analysis.

2.3. Determination of BC mass and optical properties

A thermal-optical transmittance (TOT) carbon analyzer (Sunset Lab-
oratory, Tigard, OR, USA) was used to determine the elemental carbon
(EC, as the mass-based proxy for optical BC) and organic carbon (OC)
loadings on the filter. The analysis protocol was based on NIOSH870
(Panteliadis et al., 2015) that is similar to our earlier study (Chen
et al., 2013) and others' works (Schauer et al., 2003; Subramanian
et al., 2006).

The ECOC analyzer is equipped with a laser beam at wavelength
678 nm to measure the light-absorption of aerosols on the filter. The
mass absorption cross-section (MAC) of samples before and after the
AFD solvent treatment was determined following early studies (Cheng
et al., 2011; Li et al., 2016; Ram and Sarin, 2009). The replicate analysis
of original samples (n=19) showed uncertainties of EC andMACwere
~13% and ~10%, respectively.

The AFD treatmentmay change the BC/soot morphology. Changes in
absorption uponmorphological changes of BC are zero in the Rayleigh–
Debye–Gans (RDG) approximation (Radney et al., 2014). Light-
absorbing OC – brown carbon (BrC) – may potentially interfere with
the light-absorption by BC. However, BrC particles typically have a
more pronounced wavelength-dependency, with significant light-
absorption at shorterwavelengths (typically b400nm). Thus, BrC is typ-
ically weakly absorbing (~5% of total aerosol absorption) or non-
absorbing at the 678 nm used in the ECOC analyzer (Lack et al., 2012;
Massabò et al., 2015; Yang et al., 2009).

2.4. Enhancement of mass absorption cross-section

The BC absorption enhancement (EMAC) in ambient aerosols was
measured as the ratio between MAC of original ambient samples and
that after AFD solvent-decoating treatment.

EMAC ¼ MAC original

MAC treated
ð1Þ

Where, MACoriginal and MACtreated represent the MAC measure-
ments of original ambient aerosol samples and subsequent solvent
decoated pure BC, respectively.

3. Results

3.1. Measurement of vehicle aerosols

The EMAC measurements were tested by comparing with theoretical
calculations for vehicle-emission aerosols. The vehicle samples (includ-
ing diesel vehicle exhaust and road tunnel emissions) yielded MAC
values of 5.70 ± 0.67 m2g−1 (average and standard deviation of 11
measurements) at 678-nm wavelength. This measurement agrees
with theoretical calculations of MAC for fresh diesel soot (5.65 ±
0.31 m2g−1, Fig. 2) (Adler et al., 2010), also overlappingwithmeasured
ranges reported in literature reviews (Bond and Bergstrom, 2006; Bond
et al., 2013). The subsequent AFD solvent treatments of the same vehi-
cle samples lowered their MAC to 4.02 ± 0.79 m2g−1. Such a MAC of
vehicular BC, when stripped of associated coatings, is close to a classic



Fig. 3. Temporal trends of aerosol concentrations and light absorption enhancement at the
rural site inNorthern China Plain. (a) Concentrations of OC and EC of original aerosol sam-
ples, and EC of AFD/solvent treatment. (b) Sulfate, nitrate, and ammoniumconcentrations.
(c) Mass absorption cross-section (MAC) of original aerosol samples and after solvent
treatment. (d) The enhancement of MAC (EMAC) from coating effect.

Fig. 4.Diurnal pattern of EMAC comparedwith ratios betweennon-absorbing aerosols and EC.
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theoretical prediction of pure uncoated BC (3.92 m2g−1, Fig. 2) (Adler
et al., 2010).

3.2. MAC for ambient samples before and after decoating treatment

The two-stage solvent treatments dissolved all water-soluble salts
and ~90% organic carbon in the aerosol samples. The AFD system thus
enables the decoating of BC, with the agreement of EC mass before
and after the AFD treatment (Fig. 3a). The MAC for ambient untreated
samples were 9.58 ± 1.83 m2g−1 at 678 nm (Fig. 3c). In contrast, the
AFD/solvent treatment, removing this ambient coating to leave the
pure BC residue on the filter, decreased theMAC of the stripped/uncoat-
ed BC to a narrow range of 4.38 ± 0.79 m2g−1.

3.3. BC absorption enhancement

The AFD/solvent treatment thus offers a means tomeasure theMAC
of ambient aerosol samples and their decoated pure BC, with the ratio of
the two measurements representing the absorption enhancement
(EMAC) of BC due to coatings in ambient aerosols. The PM2.5 samples at
the rural North China site showed EMAC factors of 2.25 ± 0.55
(Fig. 3d). The MAC of decoated BC (4.38 ± 0.79 m2g−1) from solvent
treatments is also lower than those for fresh emissions from fossil-fuel
combustion (6.08±0.97m2g−1 adjusted to 678nm) reported in the lit-
erature (Bond and Bergstrom, 2006; Bond et al., 2013), suggesting an
enhancement of BC absorption in fresh emissions from co-emittedmat-
ter. This suggests that the EMAC of BC due to co-emitted matter in the
fresh combustion emissions is in the range of 1.44 ± 0.30. This range
is also in agreement with the measured absorption enhancement
(1.44 ± 0.19) from the fresh emissions of diesel vehicle exhaust and
the tunnel samples of this study.

4. Discussion and conclusion

The changes in EMAC primarily reflect the formation of coating aero-
sols. The increase in aerosol coating can be inferred from the ratio of
non-absorbing particulate matter (NA-PM) relative to BC (or EC). The
EMAC showed high values in day time duringwhich photochemical pro-
duction of secondary aerosols such as sulfate and ammonium was en-
hanced (Fig. 4). An increase of EMAC correlates well with the ratios
SO4

2−/EC (R2 = 0.64), NH4
+/EC (R2 = 0.52), and NA-PM/EC (R2 =

0.56) (Fig. 5). The production of secondary sulfates and organic sub-
stances (Park et al., 2016; Wang et al., 2014) contributes to the BC ab-
sorption enhancement. EMAC increases rapidly with increasing SO4

2−/
EC ratio up to a ratio of about 20, then the EMAC approaches a flat
trend at large SO4

2−/EC ratios of 30–50 (Fig. 5a). This suggests that coat-
ings on aged aerosols can increase the EMAC to about a factor of three,
which is twice that in fresh emissions from incomplete fossil fuel
combustion.

The result EMAC of a factor of ~2 contrasts with a recent suggestion of
BC absorption enhancements of only 6% in ambient aerosols in Califor-
nia (Cappa et al., 2012), and it is also larger than the enhancement factor
(1.4) of U.K. observations (Liu et al., 2015). Previously, the direct mea-
surements of EMAC had relied on a thermal denuder (TD) of ~200 °C to
evaporate volatile aerosols that may be ambient coatings on BC core.
However, low-volatile coatings that remained after the TD heating
could lead to biases in those previous efforts for ambient determination
of BC radiative absorption enhancement.

The high levels of ambient BC in the atmosphere of East Asia have
been apportioned to predominantly fossil fuel combustion (Chen
et al., 2013). The strong emission of SO2 in fuel combustion in
industrially-active regions (Kurokawa et al., 2013) causes BC mixing
with abundant sulfate products of thick coatings (Yao et al., 2016),
explaining the large absorption enhancement in populated and devel-
oped areas such as North China. The accounting for the factor of two



Fig. 5. BC absorption enhancement (EMAC) as a function of ratios in non-absorbing matter vs. EC for PM2.5 samples in Northern China Yucheng Campaign. EMAC change with increase in
SO4

2−/EC (a), NH4
+/EC (b), OC/EC (c), NO3

−/EC (d), and total non-absorbing particulate matter (NA-PM)/EC (e). Green shading and blue pattern show the EMAC of fresh emission of fossil
fuel combustion and vehicles, respectively.
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absorption enhancement of ambient BCmay improve the climatemodel
description of BC absorption of solar radiation. Such improvement in BC
radiative estimates may have implications for several climate effects
such as the currently underestimated rates of tropical expansion that
is primarily driven by BC radiative forcing (Kovilakam and Mahajan,
2015).
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